URBAN GROUNDWATER...

The silent emergence of a conundrum...

ACWADAM's work: ..in the most hydrogeologically diverse setting in the world – based on partnership and collaboration

We are a think-tank and action-research based organisation working on the science of groundwater and its applications to societal development. We work on the practice and policy of aquifer-based, participatory groundwater management...

- Aquifer-based groundwater management
- Training
- Action research and decision support
- Policy and programmes

Bringing aquifers closer to communities...

Net Groundwater Abstraction

Doll et al., 2012

Sector-wise groundwater usage: continents - recent

Groundwater use in agriculture: global trends India's groundwater abstraction has now reached 25% of the Development in groundwater withdrawal in selected c global annual total 300 Groundwater withdrawal (cubic kilometers per year) India became the India largest extractor of groundwater in the world in the 1980s... 150

Source: Shah 2005.

Credit: Comprehensive Assessment of Water Management in Agriculture Publisher: Earthscan www.earthscan.co.uk

India's oft-unfathomed groundwater dependencies

- Rural drinking water: almost entirely groundwater – 98%
- Agriculture: 60-70% of total use
- Urban: 48% of water supply share is groundwater
- Industry: no official figures... But 55 percent of the surveyed industries used groundwater in conjunction with or without some other source of water

Shah (2009), Agriculture Statistics, various years; DDWS (2009); CSE (2012); MoDWS-CAG, 2017; FICCI+Columbia Water Center

What does the future hold: urbanisation

- Global urban population to nearly double to 6.4 billion by 2050
- 90% of the growth in low-income countries
- Urban slum dwellers will number 2 billion in 30 years time
- Urban Indians 800 million by 2050

ecially in "developing cities" is quite

- Modification of groundwater observed.
- Many problems around grou
- Two major consequences:
 - Paradox of urban recharge tra leaking mains and sewers

By 2050, the number of urban dwellers living with seasonal water

shortages

In the next 3 decades, demand for water in

cities is projected to

increase by

 Contaminant loading of sub-surhaphazard waste-disposal

icted.

Percentage growth / decline of variously sized towns and cities in India

Urban groundwater- snapshot

Schematic diagram based on Foster et al, 2010

Hydrogeological setting

After: COMMAN 2005; GSI (various years), ACWADAM (various publ.), CGWB (2012)

Sedimentary Systems

\$

4

12

13

4.0%

172

3.0%

Urbah Applomerations

Million plus cities

Lakh plus cities

Total cities(A+B+C)

Total cilies %

Talukas %.

Himalayan mountain region

ACWADAM

Bengaluru - Urban Sprawl Plotted after Narain, 2012

The Urban Continuum: A Schema in Four Stages (after:Shah and Kulkarni, 2015)

Trends in Surface and Groundwater use across variously sized Urban Settlements in India Source: Kulkarni, H; Shah, M (2014)

Ramnadi Watershed-1984

Ran Ø Watershed boundary

Pashan

Pashan lake

Mutha River

Pune

Lavale

Manas lake

Google Earth

maps Landset / Copernicus

6 km

Ramnadi Watershed-2000

ashan lake

Express Highway

Ø Watershed boundary

Manaslake

Google Earth

Image Landset / Copernicus

6 km

Mut

Pune

URBAN DEMAND EQUALS PRECIPITATION IN MANY CITIES...

	Sr. No.	Name	Typology	Water demand (mm)	Actual annual rainfall (mm)		
	1	Greater Mumbai city	Volcanic	1770	2257		
	2	Delhi city	Alluvial	1108	747		
	3	Kolkata city	Alluvial	1987	1709		
Metropolitan Region of India	4	Chennai city	Crystalline	1032	1324		
	5	Bengaluru city	Crystalline	574	870		
	6	Hyderabad city	Crystalline	512	851		
	7	Pune PMRDA	Volcanic	1084	1015		

ACWADAM

WATER SUPPLY METRICS

Year	Population	Population (Million)	Growth	Growth Rate (%)	Per capita supply as per norms 150 LPCD	As per PMC data Actual supply 228 LPCD	Supply as per norm in TMC/Year @ 150 LPCD	Actual Supply in TMC/Year @ 228 LPCD	Excess water supply in TMC	Estimated Sewage generation as per PMC data TMC/Year	
1981	1.203.351	1.20	0	0%	180502650	274364028	2.33	3.54	1.21	2.33	
1991	1.566.651	1.57	363.300	30.19%	234997650	357196428	3.03	4.60	1.58	3.04	
2001	2.538.473	2.54	971.822	62.03%	380770950	578771844	4.91	7.46	2.55	4.92	
2011	3.132.143	3.13	593.670	23.39%	469821450	714128604	6.06	9.21	3.15	6.08	

1. Supply @ 228 lpcd corrected to 26% losses	6.8 TMC
2. Sewage generated at 66% of actual supply (above)	4.5 TMC
3. Estimated/actual sewage generation	6.08 TMC
4. Estimated additional sewage generation due to groundwater usage	1.58 TMC or 44740616 m ³ or <u>166 mm</u>
5. Estimated extraction of groundwater from the additional estimate of sewage due to groundwater usage (applying the index of 66% as in point 2)	<u>3.78 TMC OR 107037676</u> m ³ or <u>400</u> <u>mm</u>

Borewell locati	on map		fing	awale Nagar					Legend • Area
					.Un	Au, dh (3aon		A A T Ch
								The state	
								Pune Un	niversity
N 1 km		Rashan Hill Lake						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Google Earth				P	ashan	J.T.		ALL PROPERTY	
Pump capacity (Hp)	Pump output (LPM) (min postulated)	Pump output (M3/hr)	Daily pumping hours (Avg)	Groundwater abstraction (M3/day)	Pumping days	Total Groundwater abstraction/ borewell (M3)	No of BWs in and around Pune city	Total Groundwater abstraction (M3)	Total Groundwater abstraction (TMC)
2	80	4.8	2.74	13.2	90	1184	125000	147960000	5.23
۷	80	<u>4.</u> 8	2.74	13.2	90	1184	80000	94094400	ا <u>عنیک</u> کرد ACWADAM

								Season wise Pumping hours			Season wise Groundwater abstraction (m3)					
Number of residents	Water requirement per capita per day (in liters)	Total water requirement per day (liters)	Supply from MIDC per day (liters)	water deficit per day (liters)	water deficit per day (m3)	water deficit per year (m3)	Pump capacity (HP)	Pump output (LPM) (minimum postulated on the basis of sample measurements)	Pump output (m ³ /hour.)	Summer	Monsoon	Winter	Summer	Monsoon	Winter	Total Groundwater abstraction/year (m3)
37000	228	8436000	400000	8036000	8036	2933140	5	200	12	581	612	657	6966	7348	7883	22197
	sgaon F	P.m.						Me	irunji							

Go

ACWADAM

require coation, ation and ration & action.. ESHIPS!!

EMS

Urban Groundwater Management – COMPONENTS

- Phase 1: MAPPING
 - Mapping and Registration of Key Groundwater Sour
 - Participatory Aquifer Mapping, including a recharge p
 - Stakeholder database
- Phase 2: MANAGEMENT
 - Strategic recharge activities concept of public recharge
 - Participatory Groundwater Management efficiency, equity and sustainability

Phase 3: GOVERNANCE

- Regulatory framework
 - Securing Groundwater from impacts of Sanitation and Waste Disposal
 - Protection of Recharge Zones
- Institutions that are organised around Urban Governance structures mohallas, wards etc.

Local resources

Community participation

Governance – public trust doctrine

Advanced Center for Water Resources Development and Management (ACWADAM)

acwadam@gmail.com www.acwadam.org

Source: Anon 2005, City Development Plan for Bungalon; Lawaharlal Nehru National Urban Renewal Mission (JNNURM), Bengaluru

Growth of Bengaluru (NOT TO SCALE)

ACWADAM

NARAIN, 2012

Wipro Bengaluru campus

www.acwadam.org

Fence diagram of watershed drawn from borehole logs based on narrative information by various stakeholders...

Fence diagram of watershed drawn from VES data based sections – ratification of social narratives

SARJAPURA AQUIFER LAYOUT-3D

Aquifer mapping: Output

Output from Excel polished in corel

www.acwadam.org

Lake-groundwater interaction: Pre-monsoon

Lake-groundwater interaction: Post-monsoon

RECHARGE WELLS IN RBD

1 year water level data from a borewell tapping Deep aquifer

WATER LEVEL FLUCTUATION AND CONFINED, UNCONFINED DYNAMICS IN AQUIFER - 3

DUG WELL VERSUS BOREWELL WATER LEVEL FLUCTUATION IN AQUIFER - 3

Aquifer mapping: Output

Output from Excel polished in corel

www.acwadam.org

Wipro Chennai campus: a geological layout

www.acwadam.org

Wipro Chennai campus

Borewell statistics

- 1 out of 5 houses has borewell + municipal connection
- Approx. 320 BW per km², avg 40 new BW drilled/day (S. Vishwanath-Biome)
- 1.75 lakh borewells as of 2013 (BWSSB-unofficially)

Adarsh Palm Retreat (APR) cluster

Area: 127 acres, Population: 6000

Shallow Aquifer (Solution within the challenge)

- Prevent water seepage/flooding in the basement
- Minimize external source of water

HYDROGEOLOGICAL SECTION OF THE AREA

VES resistivity data based section

Shallow aquifer pumping model based on T=2 $m^2/day \& S=0.03$

Monsoon: Pumping @ 100 lpm for 2 hrs followed by 2.5 days of recovery. Dry season: Pumping @ 100 lpm for 1 hr followed by 8 days of recovery.

Outcome

- "Water seepage and flooding problem is a blessing in disguise".
- Leveraging thicker shallow aquifer and vast area by diligent pumping & concurrent rainwater recharge.

Kaikondrahalli cluster

Kaikondrahalli (KKD) – Inter-relationship between Lake and surrounding wells tapping shallow aquifer & lake conservation.

Rainbow Drive (RBD) cluster Area: 34 acres, Population: 1200

Challenges:

 No formal municipal water supply, entirely borewell & tanker water dependent

Actions:

- Communitizing borewells
- Optimal waste-water management
- Banning of borewell drilling
- Water metering & LPCD reduction
- Recharge wells

- Identifying & delineating aquifers.
- Demarcating discharge & recharge areas.

RWL contour map of RBD recharge wells for a period of 1 year (2016)

Contour interval: 0.5m . RW- Recharge wells

